Considering the potential risk of X-ray to patients, denoising of low-dose X-ray medical images is imperative. Inspired by deep learning, a convolutional autoencoder method for X-ray breast image denoising is proposed in this paper. First, image symmetry and .ip are used to increase the number of images in the public dataset; second, the number of samples is increased further by image cropping segmentation, adding simulated noise, and producing the dataset. Finally, a convolutional autoencoder neural network model is constructed, and clean and noisy images are fed into it to complete the training. (e results show that this method e/ectively removes noise while retaining image details in X-ray breast images, yielding higher peak signal-to-noise ratio and structural similarity index values than classical and novel denoising methods.
Loading....